Moufang Symmetry Iv. Reductivity and Hidden Associativity

نویسنده

  • Eugen Paal
چکیده

It is shown how integrability of the generalized Lie equations of a local analytic Moufang loop is related to the reductivity conditions and Sagle-Yamaguti identity. 2000 MSC: 20N05, 17D10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moufang symmetry XII. Reductivity and hidden associativity of infinitesimal Moufang transformations

It is shown how integrability of the generalized Lie equations of continous Moufang transformatiosn is related to the reductivity conditions and Sagle-Yamaguti identity. 2000 MSC: 20N05, 17D10

متن کامل

Moufang symmetry VI. Reductivity and hidden associativity in Mal’tsev algebras

Reductivity in the Ma’tsev algebras is inquired. This property relates the Mal’tsev algebras to the general Lie triple systems. 2000 MSC: 20N05, 17D10

متن کامل

Pseudo-automorphisms and Moufang Loops

An extensive study of Moufang loops is given in [2].1 One defect of that study is that it assumes Moufang's associativity theorem [6], the only published proof of which involves a complicated induction. Using pseudo-automorphisms along with recent methods of Kleinfeld and the author [S], we shall give simple noninductive proofs of three associativity theorems, one of which (Theorem 5.1) general...

متن کامل

Moufang symmetry VII. Moufang transformations

Concept of a birepresentation for the Moufang loops is elaborated. 2000 MSC: 20N05

متن کامل

Moufang symmetry II. Moufang-Mal’tsev pairs and triality

A concept of the Moufang-Malt’tsev pair is elaborated. This concept is based on the generalized Maurer-Cartan equations of a local analytic Moufang loop. Triality can be seen as a fundamental property of such pairs. Based on triality, the Yamagutian is constructed. Properties of the Yamagutian are studied. 2000 MSC: 17D10

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008